资源类型

期刊论文 401

年份

2023 30

2022 46

2021 31

2020 48

2019 28

2018 17

2017 15

2016 21

2015 22

2014 22

2013 12

2012 20

2011 18

2010 14

2009 9

2008 9

2007 11

2006 4

2005 4

2004 3

展开 ︾

关键词

人工神经网络 2

土壤 2

基质吸力 2

微波遥感 2

横沙东滩 2

膨胀土 2

重金属 2

风化砂 2

DX桩 1

SWAT模型 1

V形坑 1

互花米草 1

五模材料 1

井塔冬期快速施工成套技术 1

井帮位移 1

产流 1

京津冀 1

人工冻融土 1

优化 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of site conditions on seismic design parameters for foundations as determined via nonlinear site response analysis

Muhammad Tariq A. CHAUDHARY

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 275-303 doi: 10.1007/s11709-021-0685-0

摘要: Site conditions, including geotechnical properties and the geological setting, influence the near-surface response of strata subjected to seismic excitation. The geotechnical parameters required for the design of foundations include mass density ( ), damping ratio ( ), shear wave velocity ( ), and soil shear modulus ( ). The values of the last three parameters are sensitive to the level of nonlinear strain induced in the strata due to seismic ground motion. In this study, the effect of variations in soil properties, such as plasticity index ( ), effective stress ( ), over consolidation ratio (OCR), impedance contrast ratio ( ) between the bedrock and the overlying strata, and depth of soil strata over bedrock ( ), on seismic design parameters ( , , and ) was investigated for National Earthquake Hazards Reduction Program (NEHRP) site classes C and D, through 1D nonlinear seismic site response analysis. The Morris one-at-a-time (OAT) sensitivity analysis indicated that , , and were significantly influenced by variations in , while affected more than it affected and . However, the influence of on these parameters was less significant. It was also found that variations in soil properties influenced seismic design parameters in soil type D more significantly than in soil type C. Predictive relationships for , , and were derived based on the 1D seismic site response analysis and sensitivity analysis results. The , , and values obtained from the analysis were compared with the corresponding values in NEHRP to determine the similarities and differences between the two sets of values. The need to incorporate and in the metrics for determining , , and for the seismic design of foundations was highlighted.

关键词: site effects     1D seismic site response analysis     sensitivity analysis     foundations     shear wave velocity     soil shear modulus    

论岩土塑性体应变与剪应变的相互作用原理

王靖涛

《中国工程科学》 2006年 第8卷 第9期   页码 24-29

摘要:

对岩土塑性变形过程中体应变与剪应变的相互作用原理的内涵做了深入的阐述,特别对塑性体应变和剪应变之间的相互作用方式,塑性体应变对抗剪能力的直接控制作用,剪缩和剪胀发生的条件,应力路径相关性是这种相互作用的综合体现及实例验证,临界状态是塑性和弹性体应变都保持不变的纯粹剪切变形过程等方面进行了论证;根据这个相互作用原理,在理论上证明了空间临界状态线的存在性和唯一性以及它与应力是无关的。

关键词: 岩土塑性体变形和剪应变的相互作用原理     岩土本构关系     压硬性     剪胀性    

Nonlinear elastic model for compacted clay concrete interface

R. R. SHAKIR, Jungao ZHU

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 187-194 doi: 10.1007/s11709-009-0033-2

摘要: In this paper, a nonlinear elastic model was developed to simulate the behavior of compacted clay concrete interface (CCCI) based on the principle of transition mechanism failure (TMF). A number of simple shear tests were conducted on CCCI to demonstrate different failure mechanisms; i.e., sliding failure and deformation failure. The clay soil used in the test was collected from the “Shuang Jang Kou” earth rockfill dam project. It was found that the behavior of the interface depends on the critical water contents by which two failure mechanisms can be recognized. Mathematical relations were proposed between the shear at failure and water content in addition to the transition mechanism indicator. The mathematical relations were then incorporated into the interface model. The performance of the model is verified with the experimental results. The verification shows that the proposed model is capable of predicting the interface shear stress versus the total shear displacement very well.

关键词: interface modeling     friction     soil structure interface     soil structure interaction     simple shear test    

Behavior of compacted clay-concrete interface

R. R .SHAKIR, Jungao ZHU

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 85-92 doi: 10.1007/s11709-009-0013-6

摘要: Tests of interface between compacted clay and concrete were conducted systematically using interface simple shear test apparatus. The samples, having same dry density with different water content ratio, were prepared. Two types of concrete with different surface roughness, i.e., relatively smooth and relatively rough surface roughness, were also prepared. The main objectives of this paper are to show the effect of water content, normal stress and rough surface on the shear stress-shear displacement relationship of clay-concrete interface. The following were concluded in this study: 1) the interface shear sliding dominates the interface shear displacement behavior for both cases of relatively rough and smooth concrete surface except when the clay water content is greater than 16% for the case of rough concrete surface where the shear failure occurs in the body of the clay sample; 2) the results of interface shear strength obtained by direct shear test were different from that of simple shear test for the case of rough concrete surface; 3) two types of interface failure mechanism may change each other with different water content ratio; 4) the interface shear strength increases with increasing water content ratio especially for the case of clay-rough concrete surface interface.

关键词: soil structure interaction     simple shear test     interface     friction     compacted clay     interface modeling    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

《中国工程科学》 2007年 第9卷 第11期   页码 11-15

摘要:

将岩土塑性体应变与剪应变的相互作用原理拓展到了非饱和土领域。除了塑性体应变与剪应变的相互作用外,在非饱和土中出现了两类新的相互作用,吸力-塑性体应变和孔隙气压力-塑性体应变。吸力具有二重性质,其对塑性体应变作用包括两个相反的方面。基于吸力性质,阐明了非饱和土的一些独特的性质,诸如有效应力参数的物理涵义,吸力对体积变化和前期固结压力的影响和湿陷机理等。另外,应用拓展的塑性体应变与剪应变相互作用原理,从理论上证明了非饱和土的临界状态线是存在的和唯一的,以及它与应力历史无关。

关键词: 塑性体应变与剪应变的相互作用原理     非饱和土     基质吸力     有效应力原理    

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 294-300 doi: 10.1007/s11465-015-0351-0

摘要:

The elastic modulus of a deposit (Ed) can be obtained by monitoring the temperature (?T) and curvature (?k) of a one-side coated long plate, namely, a one-dimensional (1D) deformation model. The aim of this research is to design an experimental setup that proves whether a 1D deformation model can be scaled for complex geometries. The setup includes a laser displacement sensor mounted on a robotic arm capable of scanning a specimen surface and measuring its deformation. The reproducibility of the results is verified by comparing the present results with Stony Brook University Laboratory’s results. The ?k-?T slope error is less than 8%, and the Ed estimation error is close to 2%. These values reveal the repeatability of the experiments. Several samples fabricated with aluminum as the substrate and 100MXC nanowire (Fe and Cr alloy) as the deposit are analyzed and compared with those in finite element (FE) simulations. The linear elastic behavior of 1D (flat long plate) and 2D (squared plate) specimens during heating/cooling cycles is demonstrated by the high linearity of all ?k-?T curves (over 97%). The Ed values are approximately equal for 1D and 2D analyses, with a median of 96 GPa and standard deviation of 2 GPa. The correspondence between the experimental and simulated results for the 1D and 2D specimens reveals that deformation and thermal stress in coated specimens can be predicted regardless of specimen geometry through FE modeling and by using the experimental value of Ed. An example of a turbine-blade-shaped substrate is presented to validate the approach.

关键词: in-plane     Young’s modulus     curvature temperature     thermal stress     coating    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1653-1653 doi: 10.1007/s11709-019-0578-7

摘要: In recent years, there has been an increased interest in the use of fiber reinforced polymer (FRP) in the construction industry. However, the E-modulus and strength of such members at high service temperatures is still unknown. Modulus and strength of FRP at high service temperatures are highly required parameters for full design. The knowledge and application of this could lead to a cost effective and practical consideration in fire safety design. Thus, this paper proposes design methods for calculating the E-modulus and strength of FRP members at different temperatures. Experimental data from literature were normalized and compared with the results predicted by this method. It was found that the proposed design methods conservatively estimate the E-modulus and strength of FRP structural members. In addition, comparison was also made with direct references to the real behavior of materials. It was found to be satisfactory. Finally, an application is provided.

关键词: concrete     fiber reinforced polymer     E-modulus     strength     temperatures    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 331-356 doi: 10.1007/s11709-019-0596-5

摘要: This paper examines the structural response of reinforced concrete flat slabs, provided with fully-embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from three test series. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine the influence of key material and geometric parameters. The results of these numerical assessments enable the identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete. Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical application.

关键词: non-linear numerical modelling     concrete damage plasticity     RC flat slabs     shear-heads     punching shear    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

《结构与土木工程前沿(英文)》   页码 812-826 doi: 10.1007/s11709-023-0940-7

摘要: A falling weight deflectometer is a testing device used in civil engineering to measure and evaluate the physical properties of pavements, such as the modulus of the subgrade reaction (Y1) and the elastic modulus of the slab (Y2), which are crucial for assessing the structural strength of pavements. In this study, we developed a novel hybrid artificial intelligence model, i.e., a genetic algorithm (GA)-optimized adaptive neuro-fuzzy inference system (ANFIS-GA), to predict Y1 and Y2 based on easily determined 13 parameters of rigid pavements. The performance of the novel ANFIS-GA model was compared to that of other benchmark models, namely logistic regression (LR) and radial basis function regression (RBFR) algorithms. These models were validated using standard statistical measures, namely, the coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The results indicated that the ANFIS-GA model was the best at predicting Y1 (R = 0.945) and Y2 (R = 0.887) compared to the LR and RBFR models. Therefore, the ANFIS-GA model can be used to accurately predict Y1 and Y2 based on easily measured parameters for the appropriate and rapid assessment of the quality and strength of pavements.

关键词: falling weight deflectometer     modulus of subgrade reaction     elastic modulus     metaheuristic algorithms    

标题 作者 时间 类型 操作

Influence of site conditions on seismic design parameters for foundations as determined via nonlinear site response analysis

Muhammad Tariq A. CHAUDHARY

期刊论文

论岩土塑性体应变与剪应变的相互作用原理

王靖涛

期刊论文

Nonlinear elastic model for compacted clay concrete interface

R. R. SHAKIR, Jungao ZHU

期刊论文

Behavior of compacted clay-concrete interface

R. R .SHAKIR, Jungao ZHU

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

期刊论文

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

期刊论文